相干光通信傳輸技術(shù)是當(dāng)下在數(shù)據(jù)中心及網(wǎng)絡(luò)基礎(chǔ)設(shè)施中實(shí)現(xiàn)400G和100G傳輸速率的主要技術(shù)方向。利用光波的更多維度,偏振,幅度,相位和頻率來承載更多的調(diào)制信息,從而擴(kuò)充了傳輸容量。
在相干光通信中主要利用了相干調(diào)制和外差檢測(cè)技術(shù)。
相干調(diào)制,就是利用要傳輸?shù)男盘?hào)來改變光載波的頻率、相位和振幅(而不象強(qiáng)度檢測(cè)那樣只是改變光的強(qiáng)度),需要光信號(hào)是相干光,例如激光。
外差檢測(cè),就是利用一束本機(jī)振蕩產(chǎn)生的激光與輸入的信號(hào)光在光混頻器中進(jìn)行混頻,得到與信號(hào)光的頻率、位相和振幅按相同規(guī)律變化的中頻信號(hào)。
工作原理:在發(fā)送端,采用外調(diào)制方式將信號(hào)調(diào)制到光載波上進(jìn)行傳輸。當(dāng)信號(hào)光傳輸?shù)竭_(dá)接收端時(shí),首先與一本振光信號(hào)進(jìn)行相干耦合,然后由平衡接收機(jī)進(jìn)行探測(cè)。外差檢測(cè),光信號(hào)經(jīng)光電轉(zhuǎn)換后獲得 中頻信號(hào),需二次解調(diào)才能被轉(zhuǎn)換成基帶信號(hào)。
主要優(yōu)點(diǎn):
1、靈敏度高,中繼距離長(zhǎng)。相干光通信相干檢測(cè)能改善接收機(jī)的靈敏度。在相同的條件下,相干接收機(jī)比普通接收機(jī)提高靈敏度約20dB,可以達(dá)到接近散粒噪聲極限的高性能,因此也增加了光信號(hào)的無中繼傳輸距離。
2、選擇性好,通信容量大。相干光通信可以提高接收機(jī)的選擇性。在直接探測(cè)中, 接收波段較大,為抑制噪聲的干擾,探測(cè)器前通常需要放置窄帶濾光片, 但其頻帶仍然很寬。在相干外差探測(cè)中,探測(cè)的是信號(hào)光和本振光的混頻光,因此只有在中頻頻帶內(nèi)的噪聲才可以進(jìn)入系統(tǒng),而其它噪聲均被帶寬較窄的微波中頻放大器濾除,外差探測(cè)有良好的濾波性能。同時(shí),由于相干探測(cè)優(yōu)良的波長(zhǎng)選擇性,相干接收機(jī)可以使頻分復(fù)用系統(tǒng)的頻率間隔大大縮小,即密集波分復(fù)用( DWDM),取代傳統(tǒng)光復(fù)用技術(shù)的大頻率間隔,具有以頻分復(fù)用實(shí)現(xiàn)更高傳輸速率的潛在優(yōu)勢(shì)。
3、具有多種調(diào)制方式。在相干光通信中,除了可以對(duì)光進(jìn)行幅度調(diào)制外,還可以使用 PSK、DPSK、QAM等多種調(diào)制格式,利于靈活的工程應(yīng)用。
發(fā)展歷史:相干光通信的理論和實(shí)驗(yàn)始于80年代。由于相干光通信系統(tǒng)被公認(rèn)為具有靈敏度高的優(yōu)勢(shì),各國(guó)在相干光傳輸技術(shù)上做了大量研究工作。經(jīng)過十年的研究,相干光通信進(jìn)入實(shí)用階段。19世紀(jì)80年代末,EDFA和WDM技術(shù)的發(fā)展,使得相干光通信技術(shù)的發(fā)展緩慢下來。在這段時(shí)期, 靈敏度和每個(gè)通道的信息容量不再備受關(guān)注。然而,直接檢測(cè)的WDM系統(tǒng)經(jīng)過二十年的發(fā)展和廣泛應(yīng)用后,相干光傳輸技術(shù)的應(yīng)用將再次受到重視。從200 5年現(xiàn)在,相干光通信方面的理論研究正在逐年升溫,商品化研發(fā)也在緩慢進(jìn)行。2006年美國(guó)DISCOVERY公司推出了帶寬2.5Gbit/s及10Gbit/s的外差檢測(cè)相干光接收機(jī),在帶寬為10Gbit/s誤碼率為10-9時(shí)靈敏度可達(dá)-30dBm,集成的相干接收機(jī)體積比普通電腦機(jī)箱小,便于運(yùn)輸和野外工作。相干光通信的一些關(guān)鍵器件及技術(shù)也在近幾年得到了很大的發(fā)展,如DISCOVERY、德國(guó)u2t等公司可提供高速高輸入功率的平衡接收機(jī)。
友情鏈接: